ORGANOPHOSPHORUS ANALOGUES AND DERIVATIVES OF THE NATURAL L-AMINOCARBOXYLIC ACID AND PEPTIDES VII*. ENZYME SYNTHESIS OF PHOSPHA-C PEPTIDES

Ivan A Natchev

Research Centre "Konstrukcionni Polimeri", 5-003 Gara Iskar, BG-1528 Sofia, Bulgaria

(Received in UK 1 November 1990)

Abstract $-$ It is proved that the phospha-C peptides (with PO—NH instead of CO—NH bond) can be obtained by enzyme-catalyzed condensation of esters of alkylphosphonic and dialkylphosphinic acids with esters of L-a-aminocarboxylic acids Condensations of the natural phosphono-, methylphosphino esters 1—4 and the ethyl esters of glycine, L-alanine, L-methionine, and L-histidine were carried out in the presence of alkaline phosphatase (with the esters 1 and 2) and phosphodiesterase I (with the esters 3 and 4) to give the phospha-C peptides $5-20$, respectively The synthesis of the free dipeptides $21-36$ applied to the dipeptides 37 and 38 (obtained by selective hydrolysis with the enzyme catalyst alkaline mesintericopeptidase of N-acetyl group of 9 and 17) and the phosphino component 4 yielded the phospha-C tripeptides $39-42$, and with glycine anhydride to tetrapeptides 43 and 44, respectively

The phospha-C peptides are bioactive compounds of considerable interest The first samples of this class were obtained by Imoto et al¹ and Martell et al² The main problem of their synthesis is the high instability of the PO-NH bond under conditions designed for the acid mediated liberation of the functional groups² The same difficulties have been encountered and cited by other authors³ In particular, they have employed the DCC-method for condensation of the phenylalanıne phosphonic analogue AcNHCH(CH₂Ph)PO₃H₂ and H-Phe-OEt Issleib et al⁴ have succeeded in synthesis of free phospha-C peptides by condensation of the mono(trimethylsilyl)ester of 2-(benzyloxycarbonylamino)ethylphosphonic acid – $[PhCH_2OCONHCH_2CH_2P(O)(OH)(OS_1Me_3)]$ and ethylisocyanoacetoacetate $[C=NCH_2COCH_2COOH]$ followed by hydrogenation and hydrolysis of the trimethylsilyl protective group. We have recently reported⁵ the synthesis of the phospha-C peptide analogue of the tripeptide antibiotic "Bialaphos" $[H_2NCH(COOH)CH_2CH_2P(O)(CH_3)$ -Ala-Ala-OH, where the liberation of the protected group was achieved by application of the enzymatic approach developed in our laboratory⁶

RESULTS AND DISCUSSIONS

The enzyme synthesis was initially applied to N-phosphonomethylglycine triethyl ester $(1)^7$ and glycine ethyl ester with the enzyme phosphodiesterase I The components were mixed in water (pH 8 4) at 35 °C for 6 h and N-phosphonomethylglycine ethyl ester (EtOCOCH₂NHCH₂P(O)(OH)₂) and glycine anhydride were isolated The water medium was assumed to be responsible for the lack of condensation and was substituted by the alcoholic one No enzyme-substrate interactions, neither condensation nor hydrolysis weie observed The aid of water $(i$ -PrOH $H_2O = 201$, 0 1 mol of each component, 10 mg enzyme, 6 h, 35 °C)

gave rise to an inselective interaction, which resulted in the required product ${\bf 5}$ in a yield of about 10 %, the free phosphono acid $\rm H_2O_3PCH_2$ —Gly—OEt, and the phosphono esters $\rm (\imath\text{---}PrO)(E\text{tO})(O)PCH_2$ —Gly— OEt and $(-P_rO)₂(O)PCH₂$ --Gly-OEt due to three enzyme-catalyzed interactions - condensation, hydrolysis, preesterification, respectively The substitution of the isopropyl alcohol with the ethanol did not increase the yield of the product 5

The experiments, where the enzyme alkaline phosphatase was introduced, turned out to be more selective with respect to production of the phospha-C dipeptide 5 Under the same conditions 5 was isolated in a yield of 65 % and the coproducts as follows the combined phosphono diester $(i\text{---}Pro)(EtO)(O)PCH₂$ Gly-OEt in a yield of 20 % and the phosphono monoesters $(-PrO)₂(OH)(O)PCH₂-Gly-OEt$, (EtO)(OH)(O)PCH₂-Gly--OEt in yields of about 5-6 %

 E^1 — Alkaline phosphatase,

SCHEME 1

 E^3 — Bee venom

It seems the enzyme catalyzed preesterification provides the required conditions for the anude condensation Substitution of the solvent, for instance with dioxane, affords only one product $-$ the phosphono monoester $(EtO)(OH)(O)PCH₂$ ---Gly---OEt The same compound was obtained from Nphosphonomethylglycme triethyl ester 1 in the presence of alkaline phosphatase in water (20 g of substrate, 10 mg enzyme, 600 ml buffer, pH 10 4, 6 h, 35 °C, practical quantitative yield) without a second amide component

The interaction of 1 with the ethyl esters of L-alanine, L-methionine, and L-histidine was carried out following a similar procedure to give the phospha-C peptides 6, 7, and 8 isolated in yields of 60, 66, and 72 %, respectively It 1s worth noting that no condensation with participation of the nitrogen atom of imidazole group was observed for the histidine interaction On the other hand, the condensation of imidazole and 1 resulted in the phosphamide (Imid)(EtO)(O)PCH₂--Gly--OEt Also the condensation in systems with molar ratio of 1 and the corresponding ethyl esters of L-ormithine, L-lysine, and L-arginine was found to affect only the α -ammo group

For a better characterization of the structure-activity relationship the behaviour of the antibiotic Plumbemicine 2⁸ produced by *Streptomices plumbens strains* was studied The condensation products 9-12 were isolated under the same conditions as above in yields of 67, 65, 71, and 76 %, respectively, from 2 and the ethyl esters of glycine, L-alanine, L-methionine, and L-histidine using alkaline phosphatase The followmg compounds were obtained as reaction coproducts monophosphono- and ethyl(propyl)phosphono esters

At the next step, the reaction of the methylphosphinic derivative of glycine 3 known for its herbicidal activity and the glycme ethyl ester was considered It was found that the enzyme alkahne phosphatase does not interact with the substrate 3 without regard to the medium — water or isopropyl alcohol/water By using the enzyme phosphodiesterase I in water (0.1 mol of both 3 and H--Gly--OEt, 10 mg of the enzyme, 600 ml of water, pH 8 4, 6 h, 35 °C) the methylphosphinic acid Me(OH)(O)PCH₂—Gly-OEt was isolated Substitution of the reaction medium with isopropyl alcohol/water afforded the phospha-C dipeptide 13 in a yield of 50 % and the following coproducts $Me(i-Pro)(O)PCH_2-Gly-OE$ and $Me(OH)(O)PCH₂$ --Gly--OEt No traces of the starting compound 3 were detected

The condensation of the substrate 3 and the ethyl esters of L-alanine, L-methionine, and L-histidine was similarly carried out to give the phospha-C peptides 14, 15, and 16, respectively in yields of between $50 - 55$ %

The same procedure (amino components and phosphodiesterase I) applied to the natural antibiotic phosphmotricme 4^{11} gave the phospha-C dipeptides $17-20$ in yields of between $60-68$ %

The hydrolysis of the protecting groups of dipeptides 5-20 was achieved by employing total bee venom It was established that the enzyme provides simultaneous hydrolysis of N-acetylic, ethoxycarbonylic, and ethhoxyphosphinylic groups of the substrates 5-20 to the free phospha-C dipeptides 21-36 isolated in yields of between 80-95 % We note that the high-molecular weight components of a dialyzed or a ultrafiltrated bee venom do not exhibit any hydrolytic activity The attempts to reactivate the enzyme by mixing high- and low-molecular weight components failed also It seems that some molecular complexes responsible for the hydrolytic activity of the total bee venom are lrreverslbly destroyed by dialysis or ultrafiltration On the other hand, the enzymes alkahne phosphatase and phosphodlesterase I treated in the same way preserve their activity for at least twelve subsequent experiments

 E^4 — Alkaline mesintericopeptidase

To extend the scope of the enzyme catalyzed approach experiments aimed at phospha-C tiipeptide synthesis were carried out The N-acetyl protecting groups encountered in phospha-C dipeptides 9 and 17 were initially hydrolyzed by using the enzyme alkaline mesintencopeptidase (EC $3.4.4$) It is well known that under certam conditions¹² the enzyme supports the hydrolysis of ethoxycarbonyhc groups to give free acids, for instance H-Cys(O₂NH₂)-OEt to H-Cys(O₂NH₂)-OH We succeeded in isolation of the free (with respect to the ammogroups) dlpeptldes **37** and **38** m yields of 72 and 79 %, respectively, usmg the following conditions 20 g of the substrate 9 and 17, respectively, 10 mg of enzyme, 600 ml water, pH 8 6, 25 \degree C, 6 h The protected phosphmotricme 4 was employed as a phosphmo component

The phospha-C tripeptides 39 and 40 were obtained in a yield of about 70 % by using the enzyme catalyst phosphodiesterase I (0 1 mol of 9 and 17, respectively, 10 mg of enzyme, medium of i --PrOH H₂O $= 20$ 1, 6 h, 35 °C) The simultaneous hydrolysis of N-acetyhc and ethoxycarbonyhc groups was realized by using bee venom to give the corresponding free phospha-C tripeptides 41 and 42 in yields above 90 %

The attempts for enzyme-supported condensation of Z-Ala-Ala-OEt and the glycine phosphono analogue $\text{AcNHCH}_2\text{P(O)(OEt)}_2$ in the presence of alkaline phosphatase or phosphodiesterase I failed The only products obtained under the above conditions were mono- or diesters of acylaminomethylphosphonic acid

It was surprisingly found that a condensation of 1 and glycine anhydride takes place in presence of alkaline phosphatase to give the condensation product 43 isolated in a yield of 65 % The hydrolysis of the protecting groups was carried out by using total bee venom to afford the free tetrapeptide 44

The results on condensation of $1-4$ with mixed anhydrides of L- α -aminocarboxyhc acids or with some cychc peptides as well as the corresponding physiological data will be published elsewhere

SCHEME 3

EXPERIMENTAL

1 General notes IR-spectra, elemental analysis, melting point, HPLC, and $[\alpha]_D^{20}$ were measurer Perkin-Elmer instruments, Mass-spectra — on Varian, R_J-values, silica gel film "Merck", reager solvents from "Aldrich" a Bulgaria

2 Synthesis of phospha-C peptides 5-20, 39, 42, 43 General procedure The phosphono $1-\overline{4}$ (0.1 mol), the ethyl esters of glycine, L-alanine, L-methionine, and L-histidine (0.1 mol), a enzymes alkaline phosphatase for the substrates $1, 2$ and phosphodiesterase I for $3, 4$ (25 mg), respe are mixed in medium of isopropyl alcohol (200 ml) and water (20 ml) and stirred at 35 °C for 6 h enzyme separation the reaction mixture is evaporated in vacuum $(50 °C)$ to dryness and the res placed in a silica gel column (eluent ethyl acetate benzene $= 91$) The eluent is concentrated to n-Hexane is added until the solution becomes opaque and the corresponding products are filtered a h at -5 °C

The same procedure applied to 1 and the glycine anhydride and 37, 38, 4 gives 39, 41, 43, tively

3 Enzyme catalyzed hydrolysis of the protected groups of 5-20, 39, 41, 44 General proce The esters 5—20, 39, 41, 44 (20 g) and a lyophilizated raw bee venom (20 mg) are suspended in (600 ml, pH 7 8) and stirred at 39 °C for 6 h until the solution becomes homogeneous. The reaction n is neutralized and concentrated in vacuum to an oily residue, which is then dissolved in hot ethanol cooling the products 21-36, 40, 42, 44 are filtered respectively

4 Synthesis of the amino components 37 and 38 The acetyl derivatives 9 and 17 (20 g) a enzyme alkaline mesintericopeptidase (10 mg) were stirred in water (600 ml, pH 7 9) at 25 °C f After concentration in vacuum the organic phase is extracted by ethyl acetate $(3 \times 100 \text{ ml})$ The dry of residue is concentrated to 50 ml and cooled n-Hexane is added until the solution becomes opaque the corresponding products 37 and 38 are filtered after 24 h at -5 $\rm{^{\circ}C}$

No M p (^0C) Yield		Molecular	Required(Found)%			$\overline{\text{IR}}$ (KBr)	MS.	\mathbf{R}_{f}
$(decomp)$ $(\%)$		Formula	C	Η	N	ν (cm ⁻¹)	(m^+/e)	a)
$5121 - 124$ 64 5		$C_{11}H_{23}N_2O_6P$	42 58	747	903	1748, 1643, 1520, 1348,	310	076
		(3103)	(4269)	731		9 12) 1255, 1118, 946, 843, 756,		
						648		
6 111 -114 59 3		$C_{12}H_{25}N_2O_6P$	44 44	7 77		8 64 1756, 1653, 1518, 1356,	324	07'
		(3243)	(4472)	738		8 60) 1248, 1132, 965, 930, 811,		
						729		
$792 - 95$	662	$C_{14}H_{29}N_2O_6PS$	43 74	760	7 29	1732, 1680, 1630, 1575,	384	0 70
		(384.4)	(4382)	733		7 35) 1342, 1256, 1152, 1068,		
						941, 856		
8 133 - 136 72 4		$C_{15}H_{28}N_4O_6P$	46 01	7 21		14 31 1762, 1675, 1628, 1592,	391	056
		(3914)	(4622)	7 14		14 15) 1530, 1368, 1249, 1138,		
						1102, 935, 848, 729, 642		
$986 - 89$	672	$C_{15}H_{27}N_2O_7P$	4784	7 19	740	1752, 1705, 1672, 1612,	378	0 7C
		(378.4)	(47 56	7 38		7 51) 1548, 1320, 1226, 1084,		
						949, 862, 736, 618		
$10100 - 1036648$		$C_{16}H_{29}N_2O_7P$	48 98	745		7 14 1760, 1710, 1666, 1630,	392	066
		(392.4)	(4869)	7 72		7 18) 1555, 1312, 1240, 1056,		
						960, 858, 729, 623		
$11 \t92 - 94$	713	$C_{18}H_{33}N_2O_7PS$	4778	735		6 19 1762, 1708, 1652, 1546, 453		058
		(4525)	(4792)	7 26		6 21) 1318, 1243, 1058, 964,		
						839, 721		

Table Physical and Spectral Data of Compounds 5-44 Prepared

REFERENCES

- * Natchev I , preceding paper, Bull Chem Sot Jpn , 1988, 61, 4491
- ' Yamauchl K , Kmoshlta M , Imoto M , Bull Chem Sot **Jpn ,** 1972,45,2528 and 2531
- ² Hariharan M, Chaberek S, Martell A, Synth Commun, 1973, 3, 375
- 3 Tarusova N B , Gandurma I A , Zhukov Yu N , Yakovleva G M , Khomutov R M , Izv Akad Nauk SSSR Ser Khlm ,1979 1596
- 4 Isslelb K , Balszuwelt A , Doepfer K **P ,** DDR pat 212739 (April 12, 1985) [Chem *Abstr* 102 (1985) 167168x]
- ' Natchev I, Bull Chem Sot **Jpn ,** 1988, 61, 3705
- ⁶ Natchev I, Synthesis, 1987 1079, Liebigs Ann Chem 1988 681
- ' Fest C , Schnudt K , "The Chemistry of Organophosphorous Pestlcldes", Sprmger-Verlag, 1982, pp 164, 175
- 8 Park B, Hirota A, Sakai H, Agr Biol Chem, 1976, 40, 1905
- ⁹ Natchev I, Bull Chem Soc Jpn, 1988, 61, 3711
- ¹⁰ Maier L, Phosphorus Sulfur, 1981, 11, 139
- 11 Bayer E , Gugel K $\,$ H , Hegele K , Hagenmaier H , Yesipov S , König W , Zähner H , Helv Chim Acta, 1972, 55, 224
- 12 Aleksiev B , Shamlian P , Videnov C , Stoev S , Zachariev S , Golovinskii E , Hoppe-Seyler's Z Physiol Chem , 1981, 362, 1323